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A finite element of the penalization type for the solution of incompressible viscous 
Navier-Stokes equations using an isoparametric parabolic element is presented. The 
penalization of the continuity equation is implemented by means of a reduced integration 
technique, thus eliminating the pressure unknown from the system of equations to be solved. 
The superiority of the nine-node isoparametric quadrilateral element over the eight-node 
element is discussed. Stability and convergence properties of the method are illustrated 
by means of various numerical examples. 

INTRODUCTION 

A finite element of the so-called penalization type, studied in [l], is used to solve 
several model problems of viscous incompressible flows in R2. Most of the finite 
element solutions for this class of problems are of the “mixed” type, requiring the 
use of the pressure term, thus limiting the size of the problems (cf. Taylor and Hood 
[IS]). To overcome this difficulty two approaches have been suggested: the use of 
saddle point algorithms (see Teman [20]) and the use of penalization and reduced 
integration (Naylor [16]). Our approach is of the second type, but instead of using 
an 8-node element which is not always consistent (cf. [l]) we use the 9-node parabolic 
(Q,) isoparametric element. 

In order to deal with the condition “div u = 0” without introducing Lagrange 
multipliers, a penalization with reduced integration “trick” is used. This technique 
was first introduced by Zienkiewicz et al. [22] for shells and later used in flow problems 
by Zienkiewicz and Godbole [21]. This enables us to show that the penalization is 
in fact a regularization of the mixed variational formulation [I], and none of the 
usual limitations of the penalization method interferes with our approximation. 
We are then in a position to solve problems with realistic discretizations with com- 
puting times that are quite competitive with accepted finite difference schemes. 

The use of reduced integration (which is limited to the penalty term only) is actually 
equivalent to the weakening of the constraint div u = 0. The necessity of such a 
weakening in mixed finite element techniques is well known and error estimates have 
also been established (cf. Fortin [8] and Crouzieux and Raviart [7]). 
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The proof of the duality of the two approaches has been given by Malkus [14, 151 
in the linear case and independently by Bercovier [l] where the Navier-Stokes 
equations are also treated. Hughes et al. [12] used a bilinear element together with a 
reduced integration technique to solve incompressible viscous flows; a related four- 
node element can also be found in Bercovier and Livne [2]. 

The penalization approach can also be applied without the use of reduced inte- 
gration. In this event, the accuracy of the results is dependent on the choice of an 
optimal penalty parameter, which has been shown by Fried [lo] to be a function of 
mesh size. A method of overcoming this problem by the combined use of penalization 
and extrapolation was given by Falk [9]. Both these studies considered only the linear 
case but they can be extended to the nonlinear case by use of the results of Pelissier [ 171. 

2. PERTURBATION OF THE NAVIER-STOKES EQUATIONS 

Let Q be a bounded domain of R2. Let 3.Q be its boundary. We want to compute 
an approximate solution to the dimensionless problem: 

Find u and p such that 

^ 
~+u.Vu-~v~u+vp=f in Q, 

u = a; a = 4x, y, t>, on aQ, (2) 

u It=0 = u,; uo = uok Y, t> in Q, (3) 

where R is the Reynolds number of the flow. 
In order to obtain our approximations we first introduce a set of equations with 

a small perturbation. (Note that we do not have what is called a slightly compressible 
flow in what follows, but it does belong to the same family of approximations 
introduced by Chorin [5].) 

Consider the following problem: 

Find u such that: 

2 + II, * Vu, - f V2u, + i (div u,) II, - 1 V(div u,) = f, (1’) 

u=a on ai2, (2’) 

u It+ = uo in Q, (3’) 

and the corresponding problem for the steady state case. Introduction of the term 
+(div I.& which defines (l’)-(3’) as a “well-posed” problem is due to Teman [19], 
who showed that if this term is not present then the system is not a Cauchy-Kowaleski 
system; in which case uniqueness and convergence for the system is an open question. 
Here the condition div u = 0 is replaced by the penalization term (l/c) V(div u,). 
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Let V = (H,1(Q))2, I@ = L2(Q)/R, W = L”(Q). Then in the steady state homo- 
geneous boundary condition case, with appropriate hypotheses on D and f, one 
can show (cf. [20]) that: 

l/u--u,Il”+;lp-PPrllw~~~ (5) 

where (u, p) is the solution of the original problem and p = -(l/c) . div u, , and 
C is a constant depending on f, Q, R but not on E. V is the product Sobolev space 
If,l(Q) x H,,l(Q) and W is L2(fZ)/R, both having the standard norms I/ * jly, (j . Ijw . 

Formulation (I’)-(3’) was studied by Teman [19] for finite difference schemes. 
The extension to a class of finite element approximations is the aim of this paper. 

Mixed Variational Formulation 

In order to clarify the main points of the analysis we shall consider here only the 
homogeneous boundary condition steady state case. 

Let us define on V x V a bilinear form: 

and consider two trilinear forms on V3: 

au, au1 
b(u,v,w) = 241 ax, + U2ax, ,I"1 i 1 ( 

8% 202 
+ u1 ax, + &ax; 3 u'2 2 

1 

&II, v, w) = $(b(u, v, w) - b(u, w, v)). 

We can now introduce the mixed variational formulation for the Navier-Stokes 
equations: 

Problem P. Find (u, p) E V x @ such that 

(l/R) a@, v> + &u, u, v) - (div v, p> = (f, v), (64 

(div u, 4) = 0 (6b) 

for all {v, 4) E Y X IV. 
The corresponding perturbed problem is: 

Problem I’, . Find (u, , p,) E V x W such that 

(l/R) ah , v> + &u, , u, , v> - (div v, 14 = (f, 9, 

4p,,q)+Wvu,,q)=O 

(6’4 

(6’b) 

for all {v, q} 6 V X W. 
In this report we suppose that the data 82, f, a, and u, are smooth enough so that 

the weak form of our problem is equivalent to (I), (2), and (3) and that we can have 
error estimates on parabolic Langrangian interpolation. 

581/30/z-3 
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Let us introduce: 

I 4u, v, w>l 
N = sup lIu/lY//vIlYlIw/lY’ 

u, v, w E v 

and the following hypothesis: 

(H.l) f is such that NR2 jl f IJy < 1 - 6, 6 > 0. 
Let Vh E V and W, E W be two finite-dimensional subspaces, let div*(d, s) be a 

bilinear operator on V x W, such that 

idiv h 4 Ph) = (div u, Ph) for all 

Define 

l&bJh,Wh)l 
Nh = Sup 11 uh IiV, II Vh IlV, /I Wh i\V, 

fh = Proj v, f. 

We shall need the hypothesis: 

(H.1’) NhR2 !I fh llv, G 1 - 6 6 > 0. 

U E v and Ph E w,. (7) 

uh 2 vh , WhE vh, 

On V x W we shall need the following fundamental hypothesis (cf. Brezzi [3]). 
There exists k > 0, such that: 

SUP idi;hU;,7Ph) >, k (Iph Ii+ for all Ph E w,. 
"I& Vh uh V, 

(8) 

We can now state the following results. 

THEOREM I. Under hypothesis (H.l), problem P (resp. P,) has a unique solution 

{u, P> (resp. {u, , PJ) and 

‘I u - u, l/v + II P -PC Ilw < CE. (9) 

THEOREM 2. Under (H-l), (H.l’), and (8), let (Uh.r ,p& be the unique solution 
of probIem P, formulated on Vh x Wh , {u, p} the unique solution of problem P, and 
{uh , ph} the unique solution of the corresponding problem on Vh x Gh then: 

II u - Uh.e ill’, + iI p - ph,c iI,+‘, < C1E + // u - uh jlV, + 11 p - ph jb,, . (10) 

For proof see Cl], 

Note. (a) Equation (10) shows that once one has chosen the proper approxima- 
tion spaces vh , wh for the original problem, the perturbed equations Will provide 
a solution as close as one wishes to (uh , ph). Thus one can solve problem P, on 
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VIt x W, without losing any significant accuracy compared to problem P, provided 
that E is small enough. 

(b) In problem P, the pressure automatically satisfies sop, = 0, for the 
homogeneous boundary condition case. 

3. A NEW FINITE ELEMENT 

The central point in Theorem 2 is (8): the proper definition of an operator divh(.). 
Following Fortin [8] and Crouzeix and Raviart [7] we extend their definition of divh(.) 
to a quadrilateral element. First note that in (6’a), (6’b) we can eliminate the pressure 
term phSE to obtain instead of (6’a), (6’b): 

and what we have to construct is the matrix representation of 

f (div, u,,,~, divh vh). 

Let & be the unit reference quadrilateral (Fig. 1) in the reference plane. We consider 
the nine-node Q, finite element (where QS is the space of polynomials of degree s 

~-2x 2 gausscan nodes 

FIG. I. Nine-node isoparametric element. 
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in each variable). The shape functions are given by standard Lagrangian interpolation, 

where (fi , vi) are the nodal coordinates. 
For the definition of W, (pressure term) we shall use Q, . Note that W, C L”(Q) 

so that we do not have interelement continuity for the pressure. In the following 
discussion, until Section 4, we drop the subscript h from urs , for ease of notation. 

Now we introduce: 

s 6 divh u+(x) dx = s 
6 div u4(x) dxT 

for all 4 E Q, . (12) 

This is nothing but the definition of the projection of div u on the space of bilinear 
polynomials over Q, . 

Let ml , a2 , a3 , 01~ be the four points of the 2 x 2 quassian quadrature on &. 
We know that this set of points is QI unisolvent (cf. Ciarlet and Raviart [6]), i.e., 
a basis of Q1 is given by the four bilinear shape functions I$~ , & , +3, 44 at nodes 
011, % 9 013, 014. So that (12) is equivalent to the four equations: 

J’ div, II& dx = 
I’ 

div II& dx; i = 1,2,3,4. 
6 d 

The 2 x 2 gaussian quadrature rule is exact for all polynomials in Q3. Now if 
u E Q2 , div u . $< E Q3 so that 

J^ h 
div u& dx 

is exactly computed by the 2 x 2 rule! By definition of & and (12’) we obtain four 
identities: 

divh u(oli) = div u(aj); i = 1, 2, 3, 4. (13) 

As divll(.) is in Q1 , we have on & 

divh u =-= 2 div “(ai) . r,&(x). (14) 
1 

Let q be the standard vector of all 18 nodal values of u on Q: 

qT = (Al, k?(l), u,(2),..., %(9), %(9)). 

According to (11) we have to compute the matrix KI such that: 

s d divh2 u dx = qTK,q. (15) 
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Let tqi (i = 1, 2, 3,4), be the weights of the 2 x 2 guassian quadrature, then in ( 15) 
we have by (14): 

(16) 

We see that Kl can be obtained by computing so div2 u dx with the 2 x 2 guassian 
quadrature rule. 

This rule is of course inexact for div* u, but by using reduced integration we 
directly obtain the stiffness matrix corresponding to our operator div,,(.)! 

In the case of a “triangulation” made up of rectangles whose sides are parallel 
to the Ox, , Ox, axis we can obtain error estimates in O(h2). The more general iso- 
parametric element is a difficult case, due to the presence of a nonconstant Jacobian. 
Numerical examples as well as an error analysis of this element are currently under 
study. 

4. APPLICATION TO NAVIER-STOKES EQUATIONS 

In all that follows V,L is taken to be the finite-dimensional space defined by a given 
FEM “triangulation.” 

The stationary approximate problem is to find u,~ such that 

Problem (17) is nonlinear. To solve it we shall use the following algorithm: 
Omitting indices h and 6, let u” be an initial guess (for instance, u” = 0), let u’~ be 

the nth iterate, compute un+l solution of 

I 
- u(u’1’ 1, 

I 
R 

v,,) + ~(IP, u”‘+l, v,J + - (div, II”“, div, vh) = (f, , v,). (18) E 

Derivation of the stiffness matrices A, B(u) for a(un+l, vh) and 6(un, u?‘l l, vh) is carried 
out by 3 x 3 gaussian quadrature. A is a symmetric positive definite matrix and B(U), 
by the definition of the functional &u, v, w) is an antisymmetric matrix for all u. 
K, , the stiffness matrix for the penalty term (divi, untl, divh vh), is also symmetric 
and nonnegative definite; thus the total stiffness matrix of (18), A + (I/E) K, L B(u) 
is positive definite: This is easily shown as follows. 

Let X be any vector; then 
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Now XTBX = -XXTBTX = -(XTBX)r, since BT = -B 2 XTBX = 0. Since 
XT(A + (1 /c) Kl) X > 0 we have 

XT (A + $ Kl + B(u)) x > 0. 

The convergence test will be on 1 u”+l - un I. Now (18) is a linear problem, whose 
matrix depends on nth iterate un through 6(un, u”+l, vh). It can be shown (cf. [I]) 
that this algorithm is convergent under the same hypotheses as those of Theorem 2. 
Convergence is usually fast, although use of the Newton-Raphson method would 
probably result in more rapid convergence at higher Reynold’s number [12]. The 
pressure field is recovered from the velocity field by p = (l/c) div, uh lzxe Gaussian 
points. 

After assembly at the element level, the degrees of freedom related to the midpoint 
node are condensed (i.e., eliminated), thus reducing the size and bandwidth of the 
final system. 

For the time dependent problem we use a fully implicit scheme. Again dropping h 
and E, let II’< the solution at time k . dt. We solve for time (k + 1) * dt: 

i 

Uk I1 - uk 1 
At , vh + jf a(uk+‘, vh) + &uktl, Ukfl, vh) + f (div, I+‘, divh v,) 

= (f;“, Vh). (19) 

The nonlinear equation (19) is solved by (18). The initial guess being uL, the algorithm 
converges in a small number of iterations. 

5. INFLUENCE OF THE VALUE OF E 

To examine the effect of the penalization parameter E on the computed velocity 
field, two analytical examples were studied using both the nine-node eIement as 
previously described and the eight-node isoparametric element as used by Zienkiewicz 
and Godbole [21]. 

The analytical examples were: compute the (u, p) solution on the unit square Q of 

-Au + gradp = F on Sz, 

Ulaa = 0, 

for 

(1) F,: FT1 = 128[x2(x - 1)2 12(2y - 1) + 2(y - 1)(2J’ - 1)y(12x2 - 12x + 2)], 

FYI = F&G x); 

(2) F,: Fr, = Fa., $- Y - 4, 

F,, = F&J, xl. 
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The solution of (1) is: 

u: u,, = -256x2(x - l)2y(y - 1)(2~’ - I), P = 0, 

% = -&!lh 4, 

and the solution of (2) is u as problem (1) and P = (x - $)( y - 4). The element 
mesh chosen was a regular 10 x 10 mesh of square elements. The relative error in 
the velocity field was calculated for values of E = 10-l through 1O-9 by: 

rel. error u = 1 ci II “e - UC II2 1/Z 
nodes ci II ue II2 

where 
u, = computed solution, 
u, = exact solution. 

The relative errors are tabulated in Table 1. 

TABLE I 

Effect of Penalization Parameter 

10-l 

10-Z 

10-s 

10-d 

10-j 

10-7 

10-h 

Example 1 Example 2 

8 pt. elt. 9 pt. elt. 8 pt. elt. 9 elt. pt. 

0.0015916 0.0014885 0.0006165 0.0000920 

0.0011780 0.0002186 0.0011624 0.0000977 

0.0033015 0.0001004 0.0033011 O.OOQO983 

0.0062272 0.0000984 0.0062272 0.0000984 

0.0071120 0.0000984 0.007 1 I 20 0.0000984 

0.0072296 0.0000988 0.0072296 0.0000988 

0.0072156 0.0001028 0.0072156 0.0001028 

The dramatic improvement of the nine-node element over the eight-node element 
is immediately evident from these results. Similar behavior has been observed by 
Ma&us [I 51. 

For the nine-node element, the effect of decreasing the value of E is seen to stabilize 
from .E = 10-3, one order less than the value of h2 = 10-2. This is as predicted by 
Theorem 2. The small increase in the relative error of u, starting from lo-’ can be 
attributed to the beginning of the effects of round-off error. 

For the eight-none element the effect of the penalization for decreasing values of E 
steadily worsens from 1O-2 although the behavior is better than might be expected 
of such a penalization method. 

The above results and the authors’ experience indicate that a value of E = 10-2h2 
is sufficient for all computational purposes. 
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6. NUMERICAL EXAMPLES 

All the numerical examples presented in this paper were run on the CDC Cyber 74 
at the Computation Centre of the Hebrew University of Jerusalem. The program 
was developed by the second author with much valuable assistance of Yitzhak 
Hasbani of the Computation Centre; it was written in Fortran and compiled by the 
CDC FTN compiler using its optimizer. 

The system of equations A(u) u = B resulting from the FEM analysis was solved 
by the iterative method A(u,) u,+~ = B. At each iteration this system of linear 
equations was solved using an LU decomposition algorithm without pivoting. 

A “skyline” storage mode was adopted for the matrix A, however, even using this 
storage mode, the memory available made an in-core solution impossible, so an 
out-of-core solution algorithm, “skyline LU decomposition by blocks,” was developed 
and coded by Hasbani [ 1 I]. All the velocity vector and pressure contour plots presented 
are the original and unretouched computer plots of the numerical results. All plots 
were done on a Gerber flat-bed incremental plotter. 

6.1. Wall-Driven Cavity 

The classical problem of a wall-driven cavity on a unit square, u = 1 along the 
entire upper boundary including the corner nodes (cf. Fig. 2) was chosen in order 
to investigate the convergence and stability properties of the previously described 
finite element technique. The modelization used was a simple “triangularization” 

x2 

(x2=1) 

u =o 

Ul =l , lJ2=0 

po 

---------) 

Q =o (q =I) Xl 

FIG. 2. Wall driven cavity. 
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a 

._....~_.... -.. 

A 

FIG. 3A. Velocity vector plots for square cavity. Reynolds number equal to O(a); 100 (b); 400 (c); 
1000 (d). 

into N2 equal squares. It might be objected that this does not take full advantage of 
the FEM but such a grid is useful for the study of convergence in terms of h = l/N 
as well as for underlining the problems that might occur when the actual solution is 
not smooth enough. 

Computations were carried out on four different grids; 5 x 5, 7 x 7, 10 x JO, 
and 12 x 12, for Reynolds numbers of Re = O(O.OOl), 100, 400, 1000. The velocity 
vector field plots for the 12 x 12 discretization are shown in Figs. 3A, and 3B gives 
the pressure contour plots for the same four cases. Looking at the uppermost nodes 
in the four diagrams of Fig. 3A it can be seen that with increasing Reynolds number 
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a 

B 

b 

FIG. 3B. Pressure contour plots for square cavity. Reynolds number equal to 0 (a); IO0 (b); 
400 (c); 1000 (d). 

there is an increasing oscillation in the right-hand corner. This is clearly due to the 
singularity in the velocity field at the comer. In the 5 x 5 grid at Re = 1000 this 
oscillation is very marked, to the extent that a large part of the velocity field is 
distorted. This effect rapidly diminished with mesh refinement. 

The profiles of the horizontal velocity along the center line of the cavity (X = 0.5) 
for each of the velocity fields of Fig. 3A are compared in Fig. 4A. These profiles 
show almost exact agreement with those of BurgraE [4]. It is also evident the profile 
for Re = 1000 is indeed approaching the theoretical profile for Re = 00. The 
presence of a thin boundary layer at high Reynolds number is evidenced by the 
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1.0 I I 1 I 

a 

.6 

.6 

Y 

.Y 

.2 

0.0 L 
1 

a-- 0 

A -- 100 
+ -- Ltoo 
x -- 1000 

1 I I I I I I I 

-1.0 -.8 -.6 -.L) -.2 .O .2 .Y .6 .8 1.0 

HflRIiEBNTAL VELOCITY U 

FIG. 4a. Velocity profile for 12 x 12 grid. 

Re = 1000 profile. This layer is seen to be much thicker at Re = 400 and is not present 
at all at Re = 100. Figure 4b compares similar velocity profiles to those of Fig. 4a, 
this time for the four different sized grids at the Reynolds number 400. Once again 
the convergent effect of mesh refinement is clear and it can be seen that further refine- 
ment of the mesh above IO x 10 does not result in any significant change in the 
velocity profile. 

The center point (II = 0) of the main eddy in the cavity was computed for the 
four Reynolds numbers at each of the various grid sizes (cf. Table 11). Also recorded 
in this table are the same results as measured from the graphs presented by Burgraff. 
The convergent effect of mesh refinement is again seen in this table. The movement 
of the eddy center downwards, first in the direction of the boundary flow and then 
toward the center of the cavity, is evident. 

At higher Reynolds numbers it is known that counter-eddies appear in the two 
bottom corners of the cavity. Figure 5 is a “blow-up” of the two bottom corners for 
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1.0 I- 1 t I I 

b 

.a 

.6 

t I t I 

a-- 5x 5 
+-- 7x 7 
A -- 10 X 10 
x -- 12 x 12 

-1.0 -.6 -.6 -.4 -.2 .O .2 .‘I .6 .6 1.0 

HURIWNTflL VELOCITY U 

FIG. 4b. Velocity profiles for Re = 400. 

TABLE II 

Center Point (u = 0) of Main Eddy 

Grid 
size 

5X5 

7x7 

IO x 10 

12 x 12 

Burgraff 

Reynolds No. 
-______ 

0 100 400 

(0.50,0.72) (0.62, 0.72) (0.61, 0.62) 

(0.50, 0.73) (0.62, 0.73) (0.59,0.61) 

(0.50,0.74) (0.62,0.73) (0.58, 0.61) 

(0.50, 0.74) (0.62, 0.73) (0.57, 0.61) 

(0.50,0.76) (0.62, 0.74) (0.56, 0.61) 

1000 

(0.59,0.57) 

(0.56,0.56) 

(0.55,0.56) 

(0.54, 0.56) 
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---------_ 

FIG. 5. “Blow-up” of corner eddies. 

b 

FIG. 6. Flow past a circular cylinder. (a) Computational grid f boundary conditions. (b) Velocity 
vector plot. (c) Pressure contour plot. 
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Re = 1000, 12 x 12 grid. The two counter-eddies are clearly visible. In the case 
of the 12 x 12 grid, with a convergence parameter of 10-4, the Reynolds number 100 
converged in 8 iterations, Re = 400 in 12 and Re = 1000 in 22 iterations; the execu- 
tion time of each iteration being 5.5 CP seconds. The initial iterative guess in all 
cases was u0 = 0 within the cavity and u0 = 1 in the x direction along the entire upper 
boundary. Tests were made using the next lower Reynold’s number as the initial 
guess and it was found that this caused a reduction in the number of iterations by a 
maximum of two iterations only. This is a distinguishing feature of the quasi- 
linearization iterative method as against the Newton-Raphson method [ 121. 

In all these examples the value of the penalization parameter, E, was lo-“. In order 
to test that a value of E = 10-2h2 is sufficient for computational purposes the 12 x 12, 

a b 

FIG. 7. High Reynolds number flow. (a) Velocity vector plot. (b) Pressure contour plot. (c) 
Computational grid. 
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I I 
TIWE STEP NO, = 1 TIflE = .126 

1 I 

TIME STEP NO. :3 TIME q .375 

zq 1 \,-: ’ I\\ 1. ’ \\“- - -A. .---- I \-- 
I 1 

TIM STEP NO. -6 TiliE = .760 

Re = 400 problem was recomputed using a value of E = 10-3. It was found that both 
the pressure and velocity field for E = 1O-5 and E = 1O-3 differed only in the fifth 
significant digit. To illustrate the stability and capabilities of the method at higher 
Reynolds numbers, the cavity problem was computed for a Reynolds number of 2000. 
In order to eliminate the singularities in the velocity field at the two top corners the 
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TIM SW NO. :S TINE = 1.125 

WE SlEP WL). S? TINE = lam 

J I 
TIME STEl’ NO. 66 TIME = I.976 

FIG. 8. Time dependent flow past a step. 

flow was driven by a thin channel (cf. Fig. 7a)) rather than by an imposed velocity 
on the top boundary of the cavity. The computed velocity vector field and pressure 
contour piots are shown in Figs. 7b and c, respectively. It is clear, on comparison 
with the result for Re = 1000, that the center of the main eddy has moved closer 
to the center of the cavity. It is also evident that the Aow is settling into a symmetric 
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form, with a slow central symmetric “square” eddy and a thin faster boundary 
layer flow. This is as expected for a highly viscous flow in a square cavity. 

The solution converged (criterion 10-4) in 20 iterations, each iteration taking 
37 seconds CP time. 

6.2. Flow Past a Circular Cylinder 

To illustrate the versatility of the FEM (in this particular example, the ease of 
treatment of curved boundaries), the flow past a circular cylinder in an infinite channel 
was computed. Since the steady state problem was considered by the symmetry 
property of the solution, only the top half of the domain was modeled. The various 
boundary conditions and computational grid used are shown in Fig. 6a. The outflow 
boundary condition used was that which arises “naturally” from (6’). 

The mesh was generated automatically by the software QMESH, developed by 
Jones [ 131. The Reynolds number used was 75 and the penalization parameter E 
was 10-5. The solution converged in 14 iterations, the convergence criterion being lo-*, 
each iteration taking 7.8 CP seconds. 

The resulting velocity vector field and pressure contours are shown in Figs. 6b and c. 
These results are in agreement with various experimental results. 

6.3. Time-Dependent Flow 

As the subject of time-dependent flows and the question of which algorithm to use 
to solve the resulting set of equations 

dU 
M z + K(u)u = F, M, K = IZ x n matrices, n = no. of degrees of freedom 

is a very wide, diverse one and will be the subject of a separate paper, we present 
here without comment the time-dependent flow of a fluid past a square step (cf. Fig. 8). 
The algorithm used was the fully implicit scheme described by Eq. (19). Steady state 
flow was reached after 21 time steps of dt = 0.125 seconds. 

CONCLUSION 

The finite element construction discussed in this paper has two interesting properties. 
First it is of a high order of accuracy, allowing the treatment of large Reynolds 
number problems without any special treatment of the nonlinear term of the Navier- 
Stokes equations. Thus in the cavity problem, Re = 1000, a step size of h = l/12 
(a total of 625 nodal points) is sufficient. 

Second, the judicious use of the penalty function with reduced integration allows us 
to eliminate the pressure unknown altogether, and so the introduction of unnecessary 
unknowns is avoided. This penalization method results in a stable positive definite 
system, thus enabling solution by a Gaussian elimination algorithm without pivoting. 

sSr/3+-4 
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Further developments currently under study are time-dependent algorithms, the 
extension of the theory to three dimensions, and the adaptation of the method to very 
high Reynolds numbers. 
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